

	Pog No:		
	Reg. No.		
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR			
(AUTONOMOUS) MCA I Year I Semester Supplementary Examinations November-2021 DISCRETE MATHEMATICS			
	(Answer all Five Units $5 \times 12 = 60$ Marks)		
	UNIT-I		
1	a Explain the difference between the principle disjunctive and conjunctive normal form.	L2	6M
	b Define NAND, NOR & XOR and give their truth table OR	L1	6M
2	a Use indirect method of proof to prove that $(\forall x)(P(x)VQ(x) \Rightarrow (\forall x)P(x)V(\exists x)Q(x))$	L2	6M
	b Define Quantifiers and types of Quantifiers with examples	L1	6 M
3	UNIT-II		
3	compatibility blocks.	LI	6M
	b Verify $f(x)=2x+1$, $g(x)=x$ for all xCR are bijective from R to R	L4	6M
4	a Define group, sub group, homomorphism and isomorphism	L2	6M
	b Prove that the set Z of all integers with the binary operation * defined as	L1	6M
	$a^{+}b=a+b+1$, for all a, b EZ is an abelian group.		
5	Out of 5 men and 2 women, a committee of 3 is to be formed. In how many ways can	τ.4	1214
	be formed if atleast one woman is to be included?	1.17	14191
(OR		
6	a How many ways can we get a sum of 8 when two indistinguishable dice are rolled? b Applying pigeon hole principle show that of apy14 integers are selected from the set	L4	6M
	$S = \{1,2,3,\ldots,25\}$ there are atleast two whose sum is 26. Also write a statement that generalizes this result	LZ	011
7	a Determine the coefficient of x^{20} in $(x^3 + x^4 + x^5 + \dots)^5$	L3	6M
	b Solve $a_{n+2} - 5a_{n+1} + 6a_n = 2$ with the initial conditions $a_0 = 1, a_1 = -1$	L6	6M
	OR		
8	Solve $a_n - 4a_{n-1} + 4a_{n-2} = (n+1)^2$ given $a_0 = 0, a_1 = 1$	L6	12M
	UNIT_V		
9	a State Euler's formula and Handshaking theorem	L1	6M
	b Define Isomorphism. Explain Isomorphism of graphs with suitable example.	L1	6M
10	OR	<u>.</u>	
10	 a Show that in any graph the number of odd degree vertices is even b Explain about the Rooted tree with an example? 	L5	6M
	~ Explain about the Robica free with an example?	L3	OIVI
	*** END ***		

Page **1** of **1**